GSTDTAP  > 地球科学
Owls help scientists unlock secret of how the brain pays attention
admin
2018-10-30
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
The researchers chose owls to study because they not only have sharp vision and hearing, but also have a midbrain organized in a way that makes it relatively easy to track the activity of specific neurons. Credit: Nagaraj Mahajan/Johns Hopkins University

By studying barn owls, scientists at Johns Hopkins University believe they've taken an important step toward solving the longstanding mystery of how the brain chooses what most deserves attention.

The finding, the cover article in the latest issue of the journal Cell Reports, likely applies to all animals, including humans, and offers new insight into what goes wrong in the brain with diseases like .

"There are a million things out there in the world bombarding our eyes, our ears, our skin and other sensory organs. Of all of those things, what particular piece of information do we most need to pay attention to at any instant to drive our behavior?" said co-author Shreesh Mysore, a Johns Hopkins University neuroscientist. "Our work provides a really beautiful answer to how the brain solves a key component of that problem."

Despite studying the forebrain of animals for decades, scientists haven't found a good answer to the question of how the brain decides what to pay attention to. The researchers decided instead to look at the midbrain, an evolutionarily older part of the brain found in everything from fish and mammals to birds and humans.

"All animals have a need to pay attention to the thing that might impact our survival, but we don't all have a highly developed forebrain," said Mysore, who is also an assistant professor of psychological and brain sciences.

The researchers chose owls to study because they not only have sharp vision and hearing, but also, like all birds, they have a midbrain organized in a way that makes it relatively easy to track the activity of specific .

Here, the researchers showed 15 owls visual stimuli on a monitor while measuring the activity of individual neurons in their midbrains.

What they found was puzzling and unexpected. Although individual neurons usually encode visual space topographically, meaning neighboring neurons encode the spaces for neighboring parts of the world, here they found single neurons responding to several pockets of locations, sometimes very far apart.

To find out why these neurons were doubling and even tripling up, lead author Nagaraj Mahajan, a doctoral candidate in electrical and computer engineering, designed a model. He discovered that if the neurons needed to signal the most important in the world no matter where visual input was coming from, the only possible way they could encode space while keeping metabolic and wiring costs in check was to have fewer neurons than locations in the world, with each neuron encoding multiple disparate locations. The real owl brain matched these computational predictions almost perfectly.

When they counted the midbrain neurons, there were 40 percent fewer of them than possible locations. And the locations that encoded were organized by a combinatorial principle, much like a Sudoku puzzle solution.

Barn owls are helping scientists learn how the brain chooses what most deserves attention. Credit: Nagaraj Mahajan/Johns Hopkins University
"This gives us an answer for the first time about how the brain actually solves the problem of selection at all possible locations," Mysore said. "What we have now is a satisfying answer for a problem that is both fundamental and universal. There is promise that the insights from this study could generalize very well all the way up to humans."

The team hopes that with this understanding of how the solves the attention at the neural level, it could be possible to make informed predictions about what's going wrong in disorders like -deficit/hyperactivity disorder, or ADHD.

"Our thinking is that these midbrain neurons might be an important key to the puzzle of that inability to focus," Mysore said. "This is basic research but it's building ideas that can eventually be tested in patients and, if we're lucky, can help us come up with therapeutics."

Explore further: Understanding how visual information guides behavior

More information: Cell Reports (2018). DOI: 10.1016/j.celrep.2018.10.022

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/125200
专题地球科学
推荐引用方式
GB/T 7714
admin. Owls help scientists unlock secret of how the brain pays attention. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。