GSTDTAP  > 地球科学
Liquid climate archives: A study on tide levels in the straits
admin
2018-09-25
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Credit: CC0 Public Domain

A new study published in Scientific Reports reports that tidal measurements reveal something about the masses of ocean water, and therefore the climate of the past, and act as "liquid climate archives."

The currents and water masses of the deepest part of the ocean play a fundamental role in the evolution of the planet's , because they affect the interactions between the ocean and atmosphere and thus contribute to determining the local, regional and . It is thus extremely important that they be described and understood. Unfortunately, little information in this regard is available from the past; very few deep measurements were taken until recent decades.

The study, co-authored by Angelo Rubino, professor of Oceanography at Ca' Foscari University of Venice, along with the researcher Davide Zanchettin, demonstrates that it is possible to obtain such data, at least partially, via the study of strait dynamics. In such areas, in fact, there are often a number of stations for tide measurement that have been operational for over a century. The main discovery reported by this new research is that variations in the position of the sea's surface measured by these stations contain information that may also affect many phenomena occurring under the surface of the adjacent basins. The morphology of the straits enables researchers to amplify these signals and transmit them up to the surface.

The discovery began with an empirical observation: the team, composed of researchers hailing from Ca' Foscari University of Venice, the Alfred-Wegener Institute of Bremerhaven (Germany), and the P. P. Shirshov Institute of Oceanology of St Petersburg (Russia), noted that the sea level measured at Messina did not correspond to that of Catania, merely tens of kilometers away, and that the trend representing the variation in this difference over time overlapped with the periodic alternation in water circulation of the nearby Ionian Sea basin.

With the use of a numerical model for describing strait dynamics, the scholars were able to demonstrate that the empirical relationship is supported by a physical explanation: the clockwise rather than counter-clockwise movement in the Ionian Sea pushes masses of different densities into the vicinity of the Strait of Messina and the different densities affect the strait dynamics.

"What we have concluded," explains Angelo Rubino, "is that the differences between the sea levels of Messina and Catania measured in the early 1900s are similar to those of today; therefore we hypothesize that variations in the circulation of the Ionian Sea similar to those observed recently may have taken place in the past."

The study demonstrates that some "lost" data pertaining to local deep sea variability can be recovered. As the team explains, "It can thus be confirmed that regions such as straits, where different are coming into contact, constitute a sort of 'magnifying lens' to highlight the dynamics of the deep sea and make it possible to put together some 'liquid archives' for climate research."

Explore further: Past deep-water dynamics in the western tropical Pacific

More information: Angelo Rubino et al. Tidal Records as Liquid Climate Archives for Large-Scale Interior Mediterranean Variability, Scientific Reports (2018). DOI: 10.1038/s41598-018-30930-8

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/124190
专题地球科学
推荐引用方式
GB/T 7714
admin. Liquid climate archives: A study on tide levels in the straits. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。