GSTDTAP  > 地球科学
New study could improve monitoring of tropical trees in face of climate change
admin
2018-05-17
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)

Experts have challenged the principle that tropical ecosystems are aseasonal – after discovering regular cycles in fruiting, flowering and leafing in such climates.

Researchers from the University of Stirling made the unexpected observations after studying 30 years of data from 851 tropical trees in the Lopé National Park in Gabon, Central Africa.

The team – led by Stirling PhD researcher Emma Bush – also uncovered the reasons behind inaccuracies in previous monitoring of tropical tree behaviour and made recommendations to enhance future approaches. This will improve monitoring and, in turn, the data that is available for organisations that manage tropical ecosystems and their products, which support livelihoods and the survival of wildlife.

The research is published in a special section of the Biotropica journal, guest edited by Dr Katharine Abernethy, Reader in Tropical Ecology in Stirling's Faculty of Natural Sciences.

Ms Bush's study – entitled Towards effective monitoring of tropical phenology: maximising returns and reducing uncertainty in long-term studies – assessed the Lopé dataset, which is the longest, unbroken record of Central African rainforest behaviour in the world. The data, which includes unique data on phenology patterns, local weather, forest productivity, and animal populations, allows scientists to analyse climate change effects on the landscape.

The academics identified regular cycles in 36 per cent of samples and found flowers are much more likely to occur on a regular, annual than fruits and leaves. The relative unpredictability of fruiting events underscores how complex these tropical ecosystems are, with a lot of variation at individual tree and species level.

They also analysed the processes used to monitor cycles to understand why regular cycling activity is observed in some species and not others.

"We found that, on average, new leaves are easier to spot in the tropical forest canopy than flowers and that, both the visibility of the event and how long it lasts, are really important influences on whether we can detect this behaviour," explained Ms Bush.

"We also found evidence that supports the approach of long-term monitoring to understand these highly complex tropical plant communities. Significantly, we found that the chance of detecting regular cycles doubled when monitoring lasted 20 years, compared to 10."

Dr Abernethy, Professor Nils Bunnefeld and Kathryn Jeffery, Research Fellow, all from Stirling, also collaborated on the research.

Dr Abernethy, Ms Bush and Ms Jeffery are also co-authors on a related paper, entitled Annual cycles dominate reproductive phenology of African , also published in the special section, which focuses on plant behaviour – such as fruiting, flowering and leaf fall – in tropical ecosystems.

Dr Abernethy said: "The special section is about cycles of productivity and natural cycles in – and how these are changing with the age of trees; seasonal changes related to climate change; and unpredictable climatic effects.

"It's also about how poorly these patterns are understood, even though they are critical for feedback to local weather, for humans using forests – such as for timber or for food – and for animals relying on plants for fruit as food.

"The research underlines how long it takes to understand the behaviour of such diverse systems as tropical forests, or such long-lived organisms as rainforest , and how essential it is that this research sector expands."

Explore further: Tropical dry forests 'canary in the coal mine' on climate change

More information: Towards effective monitoring of tropical phenology: maximizing returns and reducing uncertainty in long‐term studies. BioTropica, doi.org/10.1111/btp.12543

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/119838
专题地球科学
推荐引用方式
GB/T 7714
admin. New study could improve monitoring of tropical trees in face of climate change. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。