GSTDTAP  > 地球科学
Scientists generate a high-quality wheat A genome sequence
admin
2018-05-11
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Chinese scientists generate a high-quality wheat A genome sequence
Triticum urartu, the progenitor of wheat A subgenome. Credit: IGDB

Bread wheat (Triticum aestivum L.), feeding more than 35 percent of the human population and providing about 20 percent of calories and proteins consumed by humans, is a globally important crop due to its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Due to its complex polyploidy nature (hexaploid, containing A, B and D three subgenomes) and large genome size (17 Gb), the genetic and functional analysis of bread wheat is extremely challenging.

The A genome, which originates from the diploid wild einkorn wheat Triticum urartu, has a genome size about 5 Gb, and is the basic genome of bread wheat and other polyploidy wheats. It plays a central role in wheat evolution, domestication and genetic improvement. To illustrate the genomic structures of wheat, the wheat genome research team at the Chinese Academy of Sciences, along with their collaborators, generated a high-quality genome sequence of T. urartu by combining BAC-by-BAC sequencing, single-molecule, real-time, whole-genome shotgun sequencing and next-generation mapping technologies.

The scientists produced seven chromosome-scale pseudomolecules, predicted 41,507 protein-coding genes, and presented an evolution model of T. urartu chromosomes. Then they found that the collinearity originated from the ancient genome duplications in T. urartu were strongly disrupted because of extensive amplifications of transposable elements and widespread gene loss, compared to rice, sorghum and Brachypodium.

Comparative analysis with the A, B and D subgenomes of also showed that four large chromosomal structure variations occurred during wheat evolution. Population genomics analysis revealed that T. urartu accessions from the Fertile Crescent formed three distinct groups with different adaptation to high altitude and biostress, such as powdery mildew disease.

The of T. urartu provides a diploid reference for the analysis of polyploidy wheat genomes, and is a valuable resource for systematically studying the evolution and genetic variations in wheat and related grasses. It promises to facilitate the discovery of genes conferring important traits for the genetic improvement of wheat to meet the future challenges of global food security and sustainable agriculture.

The research results were published on line in a paper in Nature with the title "Genome sequence of the progenitor of A subgenome Triticum urartu."

Explore further: Genome of wheat ancestor sequenced

More information: Hong-Qing Ling et al, Genome sequence of the progenitor of wheat A subgenome Triticum urartu, Nature (2018). DOI: 10.1038/s41586-018-0108-0

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/116496
专题地球科学
推荐引用方式
GB/T 7714
admin. Scientists generate a high-quality wheat A genome sequence. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。