GSTDTAP  > 地球科学
Measuring the hardness of living tissues without damage
admin
2018-05-15
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Graphic of the overview of the inference algorithm. Credit: Yohei Kondo

When a fertilized egg is developing into a fetus, cell populations forming tissues are in a fluid state, and thus, the tissue can be easily deformed. Cells also generate mechanical forces during development that contribute to the shaping of the tissues and organs. An important question is how organisms secure/proceed with proper tissue and organ formation in these conditions. In order to understand the process of tissue and organ formations, it is essential to understand how physical characteristics of tissues responding to mechanical stresses influence the process of organogenesis.

To tackle this problem, a research team from the National Institute for Basic Biology (NIBB) and Kyoto University has proposed a unique, non-invasive (i.e. without leaving any damage behind) way of measuring the hardness of tissues by combining physical modeling of the tissues with statistical estimation.

Professor Kazuhiro Aoki said, "Although many in our field use conventional ways of testing hardness of tissues, such as cutting or applying pressure to which are rather soft, the resulting damage was a big concern because it hampers normal morphogenesis."

Assistant Professor Yohei Kondo said, "Our proposed methodology involves measuring the spontaneous deformation of the cell population as well as the applied over the tissue. Based upon the information acquired from these observations, the hardness of the tissue is then able to be estimated."

The effectiveness of the proposed technique has been experimentally validated with monolayer-cultured cells. The research group also revealed that the hardness/stiffness of the tissues can be changed depending on not only the physical properties of materials composing the cells, but also on the cell activities controlled by molecular motor, etc. The group hopes that this work will serve as an important step towards further understanding of the mechanism of organogenesis. The results of this research were published in the journal, PLoS Computational Biology.

The heatmap of estimated values of bulk modulus is overlaid on the corresponding phase contrast image of cell monolayer. Credit: Yohei Kondo

Explore further: Tissue mechanics essential for cell movement

More information: Yohei Kondo et al, Inverse tissue mechanics of cell monolayer expansion, PLOS Computational Biology (2018). DOI: 10.1371/journal.pcbi.1006029

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/116451
专题地球科学
推荐引用方式
GB/T 7714
admin. Measuring the hardness of living tissues without damage. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。