GSTDTAP  > 地球科学
New plant breeding technologies for food security
admin
2019-03-29
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
IMAGE

IMAGE: New breeding technologies can help make agriculture in developing countries more productive and protect against climate change. This photo shows smallholder farmers in Malawi peeling peas in front of their... view more 

Credit: S Koppmair

An international team, including researchers from the University of Göttingen, argues in a perspective article recently published in Science that new plant breeding technologies can contribute significantly to food security and sustainable development. Genome editing techniques in particular, such as CRISPR/Cas, could help to make agriculture more productive and environmentally friendly. The researchers advocate the responsible use and support of these new technologies.

"Plant breeding and other agricultural technologies have contributed considerably to hunger reduction during the last few decades", says Matin Qaim, an agricultural economist at the University of Göttingen and one of the article's authors. But the resulting high intensity in the use of agrochemicals has also caused serious environmental problems. Future technologies need to reduce the negative environmental footprint and make agriculture more resilient to climate stress. Predictions suggest that small farms in Africa and Asia will suffer especially from the effects of climate change.

"Genome editing allows us to develop crop plants that are more resistant to pests and diseases and more tolerant to drought and heat", says Shahid Mansoor from the National Institute for Biotechnology and Genetic Engineering in Pakistan. This can help to reduce crop losses and chemical pesticide sprays. In genome editing, certain DNA sequences are changed or "switched off" in a very precise way without foreign genes being introduced. Hence, genome-edited crops are different from transgenic genetically modified organisms (GMOs). "The new methods are already being used in various cereals and also to improve neglected food crops such as pulses or local vegetables," Mansoor explains.

"We should be careful not to repeat the mistakes that were made with GMOs", says Qaim. "The limited public acceptance and the high regulatory hurdles for transgenic GMOs have contributed to a concentration of biotech developments in only a few major crops and in the hands of only a few multinationals. We need more diversity and more competition," adds Qaim. "Genome-edited crops do not contain foreign genes; as the breeding techniques are more precise, these crops are as safe as conventionally bred crops. Hence, genome-edited crops should not be regulated as if they were transgenic GMOs".

In Europe, regulations for genome-edited crops are still being debated. In July 2018, the EU Court of Justice ruled that these crops would fall under the existing GMO law, which is disappointing according to the authors of this position paper. "This will hold up future applications" says Qaim. The regulation of new breeding technologies in Europe also has a major impact on developing countries, carrying the risk that the enormous potential of genome editing for food security cannot be fully harnessed, the researchers fear.

###

Original paper: Zaidi, S.S., H. Vanderschuren, M. Qaim, M.M. Mahfouz, A. Kohli, S. Mansoor, M. Tester (2019). New plant breeding technologies for food security. Science, https://doi.org/10.1126/science.aav6316.

Contact:

Professor Matin Qaim
University of Göttingen
Department of Agricultural Economics and Rural Development
Platz der Göttinger Sieben 5, 37073 Göttingen
Telephone: +49 (0)551 3924806
Email: mqaim@uni-goettingen.de

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/114451
专题地球科学
推荐引用方式
GB/T 7714
admin. New plant breeding technologies for food security. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。