GSTDTAP  > 气候变化
Climate-driven evolution in trees alters their ecosystems
admin
2019-03-06
发布年2019
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: A mature, gallery forest of narrowleaf cottonwoods on the Snake River, Wyoming. view more 

Credit: Ian Ware/University of Tennessee, Knoxville.

A new study published in Global Change Biology and coauthored by researchers from UT, explores how climate, evolution, plants, and soils are linked. The research is the first to show how climate-driven evolution in tree populations alters the way trees directly interact with their immediate soil environment.

By surveying 17 naturally occurring populations of narrowleaf cottonwood trees (Populus angustifolia), the researchers discovered that tree populations in warmer places have less genetic variation. This difference, in turn, has consequences for their soil microbial communities and soil chemical composition.

"Future climate change could reduce the potential for adaptation in plants, especially in less genetically varied populations. In order to cope with these stressful conditions, plants may be developing a stronger relationship with their soil microbiome and nutrients. It may be a mechanism for persistence in a changing world," said Ian Ware, PhD candidate in UT's Department of Ecology and Evolutionary Biology and lead author of the study.

Warmer temperatures in southern tree populations have resulted in earlier bud break and leaf-out--the time period in which buds, then leaves, become present on the growing plant. This evolution reduces genetic variation and alters the way tree populations interact with their soil environment.

"We show that as climates become warmer and drier, population-level genetic variation decreases and trees have a larger impact on their associated soil microbes and soil nutrient pools," said Ware.

The finding suggests a mechanism for how these plants continue to exist in stressful climates.

"Understanding how plant-soil-microbe linkages evolve in response to changes in climate across habitats may provide information on the forces that drive local adaptation with consequences for nitrogen availability and soil carbon storage," Ware said. "These findings have direct implications for climate change conservation and restoration practices, such as assisted migration and population management."

###

CONTACT:

Andrea Schneibel (865-974-3993, andrea.schneibel@utk.edu)

Will Wells (wrw@vols.utk.edu)

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert!
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/113825
专题气候变化
推荐引用方式
GB/T 7714
admin. Climate-driven evolution in trees alters their ecosystems. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。