GSTDTAP  > 地球科学
Discovery upturns understanding of how some viruses multiply
admin
2019-03-12
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
Credit: CC0 Public Domain

Scientists have shown that different segments of a virus genome can exist in distinct cells but work together to cause an infection.

The findings, published in the open-access journal eLife, upturn a fundamental model in virology that a enters and replicates within a and then moves on to replicate in another.

Multipartite viruses are intriguing viral systems because their genome is divided into several segments and each is enclosed within a distinct virus particle. It has long been believed that all of the genome segments must move together from cell to cell to cause an infection. But the new study shows this is not the case.

"The chances of a multipartite virus losing an essential genome segment during transmission are estimated to be so high, its ability to successfully cause an infection has been a long-standing mystery," says first author Anne Sicard, Postdoctoral Researcher at the National Institute for Agricultural Research (INRA), France. "We set out to test a bold possibility: can this virus successfully infect a host even if its genome segments are not together within ?"

To investigate this, the scientists studied the faba bean necrotic stunt virus, which has eight distinct genome segments, and used fluorescent probes to detect the presence of the different viral segments in individual cells of the faba bean plants. Interestingly, the team found that distinct segments are most often found in different cells. This even applied to segments of the genome that code for vital functions such as replication, encapsidation (the process of enclosing viral DNA in a protective coat) and movement of the virus between cells.

These results suggest that the virus can function while its genome segments appear in distinct cells, but more evidence was needed. To further counter the possibility that all genome segments are replicated as a single system within individual cells, they sought to show that the segments could independently accumulate in different cells. They labelled the segments responsible for replication and encapsidation with red and green fluorescence and measured the amounts in different cells to see whether accumulation of one segment in the pair was dependent on the other. They found no link between the amounts of the two different segments at either early or later stages of infection, showing that accumulation of the segments was independent.

To make sense of these findings, they assumed that a viral function can act in a cell even where its genome segment is not present. To test this, they focused on the genome segment responsible for replication (R) and searched for the molecule it encodes—M-Rep—in cells where another segment (S) is replicated. Although the segment R was only detectable in a minority of these cells (about 40%), its product M-Rep was found in nearly 85%. This suggests that either the M-Rep protein itself, or transcripts of the genome segment that makes it, is produced in cells where the segment R is present and then travels to other cells of the host.

"Altogether, we have shown that distinct segments of a ' genome are not necessarily together within individual host , and that accumulation of one segment in a cell is entirely independent of accumulation of the others," concludes senior author Stéphane Blanc, Research Director at INRA. "It is conceivable that this 'multicellular' way of life could be adopted in numerous viral systems and opens up an entirely new research horizon in virology."

Explore further: Study reveals new therapeutic target for slowing the spread of flu virus

More information: Anne Sicard et al, A multicellular way of life for a multipartite virus, eLife (2019). DOI: 10.7554/eLife.43599

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/110519
专题地球科学
推荐引用方式
GB/T 7714
admin. Discovery upturns understanding of how some viruses multiply. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。