GSTDTAP  > 地球科学
Tiny poplar roots extract more water than their larger counterparts after drought
admin
2019-02-26
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
Composite images of 16 radiographs of 11-week-old poplar seedling in sand (top). The intensity indicates water content (bottom). Credit: US Department of Energy

Our knowledge of how plant roots respond to stress is based largely on indirect data. Scientists didn't have a good way to see through soil. A team overcame that problem. They used neutron imaging. They measured water moving through the soil and being taken up by individual poplar seedling roots after a drought. Smaller diameter roots took up more water (per unit surface area) than bigger roots. Neutron imaging is used to measure soil water movement and water uptake by individual roots in situ.

Root water uptake can be linked to characteristic root traits, such as diameter or age. Comparing actual water uptake with modeled water uptake highlights problems with current model assumptions. This work points to the need for new research to understand soil hydraulic properties with and without roots present.

Knowledge of plant root function under stress is largely based on indirect measurements of bulk soil water or nutrient extraction, which limits modeling of root function in land surface models. Neutron radiography, complementary to X-ray imaging, was used to assess in situ water uptake from newer, finer roots and older, thicker roots of a poplar seedling growing in sand. The smaller diameter roots had greater per unit surface area than the larger diameter roots, ranging from 0.0027 to 0.0116 grams per square centimeter of root surface area per hour. Model analysis based on root-free soil hydraulic properties indicated unreasonably large water fluxes between the vertical soil layers during the first 16 hours after wetting. This suggests problems with common soil hydraulic or root surface area modeling approaches. It also suggests the need for further research into the impacts of roots on soil hydraulic properties.

Explore further: Study pinpoints how Salmonella sneaks into plant roots

More information: Indu Dhiman et al. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data, Plant and Soil (2017). DOI: 10.1007/s11104-017-3408-5

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/110169
专题地球科学
推荐引用方式
GB/T 7714
admin. Tiny poplar roots extract more water than their larger counterparts after drought. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。