GSTDTAP  > 地球科学
Fiber composition in rice coproducts revealed in new study
admin
2019-02-01
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)

Rice coproducts in pig diets add fat and fiber, but too much fiber can decrease energy absorption and digestibility. A recent study from the University of Illinois characterizes the chemical composition of fiber in rice and rice coproducts, which could lead to diet interventions for improved digestibility.

"Because of fiber's low fermentability, there's a high upside potential for increased digestibility if we can find specific enzymes that can help degrade those fibers. For pigs, the most important thing is to be able to get more energy out of each ingredient," says Hans Stein, professor in the Department of Animal Sciences and the Division of Nutritional Sciences at U of I, and co-author of the study published in Animal Feed Science and Technology.

A former doctoral researcher working with Stein, Gloria Casas, analyzed the carbohydrate composition of several ingredients—brown rice, broken rice, full-fat rice bran, defatted rice bran, and rice mill feed—in a laboratory in Denmark. She also evaluated the digestibility of each ingredient by simulating the environments of the pig stomach, , and large intestine, including fermentability by gut microbes.

The ingredients varied widely in starch, cellulose, lignin, and fiber content, among other specific carbohydrate fractions, but for all ingredients, the primary carbohydrates were arabinoxylans.

"Arabinoxylans are relatively complex fibers that consist primarily of two sugars, arabinose and xylose, though there are many others in there, too," Stein says. "That is true for all the rice coproducts, but the ratio between arabinose and xylose differs among the ingredients. That ratio, to some degree, influences the functionality of the fibers."

Simulated (in vitro) digestibility was higher in and broken rice than for all other coproducts, which Stein and Casas expected, given that full-fat rice bran, defatted rice bran, and rice mill feed were much higher in insoluble fibers. The results confirm earlier digestibility studies the researchers completed with the same ingredients in pigs.

Stein notes the results don't just apply to .

"Humans consume rice and rice all over the world. Knowing the specific fiber composition of these products will allow us to figure out which gut microbes are affected," he says. "In humans, one of the major problems in terms of nutrition in our part of the world is that we don't get enough fiber. If we consume these fibers, how will they affect our gut microbes?"

Explore further: Adding microbial xylanase to diets containing rice bran increases energy value for pigs

More information: Gloria A. Casas et al, Arabinoxylan is the main polysaccharide in fiber from rice coproducts, and increased concentration of fiber decreases in vitro digestibility of dry matter, Animal Feed Science and Technology (2018). DOI: 10.1016/j.anifeedsci.2018.11.017

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/109725
专题地球科学
推荐引用方式
GB/T 7714
admin. Fiber composition in rice coproducts revealed in new study. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。