GSTDTAP  > 地球科学
'Seeing' tails help sea snakes avoid predators
admin
2019-02-15
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
Olive sea snake (Aipysurus laevis) diving underwater. Sea snakes live their entire lives at sea and must come up to the sea surface to breath air. Credit: Chris Malam

New research has revealed the fascinating adaptation of some Australian sea snakes that helps protect their vulnerable paddle-shaped tails from predators.

An international study led by the University of Adelaide shows that several of Australian sea snakes can sense light on their skin, prompting them to withdraw their tails under shelter. The study has also produced new insights into the evolution and genetics of this rare light sense.

The researchers found that olive sea snakes (Aipysurus laevis) and other Aipysurus species move their tail away from light. They believe this is an adaptation to keep the tail hidden from sharks and other predators.

"Sea snakes live their entire lives at sea, swimming with paddle-shaped tails and resting at times during the day under coral or rocky overhangs," says study lead author Jenna Crowe-Riddell, Ph.D. candidate in the University of Adelaide's School of Biological Sciences. "Because sea snakes have long bodies, the tail-paddle is a large distance from the head, so benefits from having a light-sense ability of its own.

"The olive sea snake was the only reptile, out of more than 10,000 , that was known to respond to light on the skin in this way."

The researchers tested for light-sensitive tails in eight species of sea snakes, but found that only three species had the light-sense ability. They concluded the unique ability probably evolved in the ancestor of just six closely related Australian species.

"There are more than 60 species of sea so that's less than 10% of all sea snakes," says Ms Crowe-Riddell. "We don't know why this rare sense has evolved in just a few Aipysurus species."

The researchers used RNA sequencing to see what genes are active in the skin of sea snakes. They discovered a gene for a light-sensitive protein called melanopsin, and several genes that are involved in converting light into information in the nervous system.

"Melanopsin is used in a range of genetic pathways that are linked to sensing overall light levels around us. It is even used by some animals, including humans, for regulating sleep cycles and in frogs to change their skin colour as a camouflage," says Ms Crowe-Riddell.

Lead scientist Dr. Kate Sanders, ARC Future Fellow at the University of Adelaide, says: "We've confirmed the ability of olive to sense light in their tails and found the same ability in two other species. We've identified a shortlist of genes that are likely to be involved in detecting . But further study will be needed to target these genes before we can really understand the genetic pathways involved in this fascinating behaviour."

Published in the journal Molecular Ecology, the study is a collaboration between the University of Adelaide, the University of Bristol, the University of Western Australia and the Natural History Museum, London.

Explore further: Sea snakes can sense objects at a distance by feeling movements in the water

More information: Molecular Ecology (2019). DOI: 10.1111/mec.15022

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/109472
专题地球科学
推荐引用方式
GB/T 7714
admin. 'Seeing' tails help sea snakes avoid predators. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。