GSTDTAP  > 资源环境科学
Researchers Discover New Region of Iron Limitation in Ocean
admin
2018-12-10
发布年2018
语种英语
国家美国
领域资源环境
正文(英文)
Phytoplankton

Phytoplankton

Scientists at Scripps Institution of Oceanography at the University of California San Diego have found that iron in deep ocean regions affects plankton growth, revealing a large, new area where iron influences life at the base of the food web.

The findings were published in the Proceedings of the National Academy of Sciences December 10, 2018.

Phytoplankton are photosynthetic microscopic organisms that form the base of the food chain in the ocean, and iron is a crucial element for phytoplankton growth. Scientists have known that iron levels affect the productivity of phytoplankton, but most of this previous research has focused on areas visible to satellites. Regions in the lower photic zone–below the surface that satellites cannot see–are also important areas for phytoplankton growth, particularly in the subsurface chlorophyll maximum layer, the region below the surface of the water that contains the most chlorophyll, an index of phytoplankton abundance. The location and size of this region varies with ocean depth; it can be found shallower in nearshore environments but much deeper in offshore areas.

This new research shows that low iron levels can limit phytoplankton growth in this deeper layer. Iron limitation in this region has consequences for the larger ecosystem, because plankton in this layer provide a significant amount of food and energy. Phytoplankton support grazers like krill, which in turn support a large marine food web, from fish to whales and even humans. Iron limitation could also impact the oceanic carbon cycle, the process of circulating carbon around the planet and controlling atmospheric carbon dioxide levels. Phytoplankton are crucial for moving carbon out of the atmosphere and deep into the ocean.

“In many areas of the ocean, the subsurface chlorophyll maximum layer is highly productive,” said Scripps researcher Katherine Barbeau, senior author of the study. “Understanding how iron limitation influences this important yet under-studied region enhances our ability to monitor changes in productivity in marine ecosystems.”

Aboard a research expedition with the California Cooperative Oceanic Fisheries Investigations (CalCOFI) on Research Vessel Sally Ride, the scientists collected water samples from various stations along a coastal to offshore trackline. The samples were then analyzed for iron.

One method involved looking at nutrient levels in the water. When diatoms - a common phytoplankton - are growing, they take up the minerals silicate and nitrate from the surrounding seawater. However, when they are stressed from limited iron they lose the ability to take up nitrate. Therefore a higher ratio of nitrate to silicate levels in the water is a sign that the diatoms are stressed and there is not sufficient iron. Looking at a 30-year nutrient dataset from the CalCOFI time series, the researchers found that iron limitation in nearshore subsurface chlorophyll maximum layers is most prominent during the summer, and has increased in frequency and extent over the last two decades. The reasons remain unclear, but could be related to large-scale climate systems like the North Pacific Gyre Oscillation. When they looked at nutrients globally, the researchers found indications of subsurface iron limitation in many upwelling regions.

“Iron limits primary production by phytoplankton in many open ocean environments,” said David Garrison, a program director for the National Science Foundation’s Long-Term Ecological Research program, which funded the project. “Now we also have evidence of this same iron process in coastal ecosystems.”

This research was supported by the National Science Foundation, including grants in support of  the California Current Ecosystem Long Term Ecological Research program. Additional support was provided by the U.S. Department of Energy. The CalCOFI program is supported by the California Department of Fish & Wildlife, the National Oceanic and Atmospheric Administration Fisheries Service, and Scripps Institution of Oceanography.

 
About Scripps OceanographyScripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.About UC San DiegoAt the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. Learn more at www.ucsd.edu.
URL查看原文
来源平台Scripps Institution of Oceanography
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/107731
专题资源环境科学
推荐引用方式
GB/T 7714
admin. Researchers Discover New Region of Iron Limitation in Ocean. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。