GSTDTAP  > 资源环境科学
Research Highlight: Acid Ocean Poses Increased Reef Loss Risk
admin
2018-03-05
发布年2018
语种英语
国家美国
领域资源环境
正文(英文)
Scripps researcher Tyler Cyronak and test chambers in a study of ocean acidification effects on coral reef sediments in Bermuda

Scripps researcher Tyler Cyronak and test chambers in a study of ocean acidification effects on coral reef sediments in Bermuda

Much of the sediment that serves as the foundation of most coral reef ecosystems could begin to erode within 30 years as a result of increasing ocean acidity, according to new research.

Scientists at Scripps Institution of Oceanography at the University of California San Diego, are part of a study led by Australia’s Southern Cross University that found that sands that provide material for the building and maintenance of some coral reef ecosystems face a decline.  Calcium carbonate, a key reef building block, may dissolve faster than it is being produced. The researchers conclude that this dissolution will exacerbate reef loss, and in some regions such as Hawaii it has already begun.

“Coral reef sediments around the world will begin to dissolve when seawater reaches a tipping point in acidity – which is likely to occur well before the end of the century,” said study lead author Professor Bradley Eyre from Southern Cross University’s Centre for Coastal Biogeochemistry.

Ocean acidification is a consequence of the use of fossil fuels and other human activities that have raised levels of the greenhouse gas carbon dioxide to the highest in human history. The oceans absorb a portion of the CO2 emitted into the atmosphere, after which the gas is converted into different chemicals that include carbonic acid. As seawater CO2 increases, the pH falls and it becomes more difficult for shell-forming organisms to create calcium carbonate.

The study, “Coral reefs will transition to net dissolving before end of century,” appeared Feb. 23 in the journal Science. Co-authors include Scripps chemical oceanographers Tyler Cyronak and Andreas Andersson.

The researchers placed chambers on the seafloor at five reef locations in the Pacific and Atlantic Oceans to measure the impact of future seawater acidity in dissolving the sands that make up coral reef systems.

“It was surprising how consistent the response of sediment dissolution to increasing CO2 was across a range of different sand types within different coral reef ecosystems,” said Cyronak, a postdoctoral researcher at Scripps. “Despite physical and chemical differences between the reef sites, dissolution rates of the sands were consistently more sensitive to ocean acidification than coral calcification was.”

The researchers noted that the results do not necessarily mean that entire reefs will dissolve as corals will continue to calcify.

“If you think of calcium carbonate  production and dissolution as making deposits or withdrawals to a savings account, our results suggest that withdrawals will exceed deposits in the next few decades. The consequences, however, will depend on both the size of savings and the difference between deposits and withdrawals,” said Andersson.

The authors also note that coral reefs are especially vulnerable ocean ecosystems as ocean warming and coral bleaching threatens reefs’ ability to produce calcium carbonate. In addition, their proximity to land masses exposes them to runoff of organic matter from terrestrial sources. The organic matter tends to lower seawater pH faster, especially in sediments where organic matter is broken down by microbial respiration.

–      Robert Monroe (portions adapted from Southern Cross University release)

 

 

Note to broadcast and cable producers: University of California San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or email the media contact listed above to arrange an interview.
About Scripps OceanographyScripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.About UC San DiegoAt the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. Learn more at www.ucsd.edu.
This story appears in explorations now, Scripps Institution of Oceanography's award-winning ocean and earth science magazine. Sign up to receive our free monthly story roundup.
URL查看原文
来源平台Scripps Institution of Oceanography
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/107416
专题资源环境科学
推荐引用方式
GB/T 7714
admin. Research Highlight: Acid Ocean Poses Increased Reef Loss Risk. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。