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ABSTRACT 
 
Agricultural statistics derived from remote sensing data have been used primarily to compare land use 
information and changes over time. Nonclassical measurement error from farmer self-reports has 
been well documented in the survey design literature primarily in comparison to plots measured using 
Global Positioning System (GPS). In this paper, we investigate the reliability of remotely sensed 
satellite data on nonrandom measurement error and on agricultural relationships such as the inverse 
land size–productivity relationship and input demand functions. In our comparison of four Asian 
countries, we find significant differences between GPS and remotely sensed data only in Viet Nam, 
where plot sizes are small relative to the other countries. The magnitude of farmers’ self-reporting bias 
relative to GPS measures is nonlinear and varies across countries, with the largest magnitude of self-
reporting bias of 130% of a standard deviation (2.2-hectare bias) in the Lao People’s Democratic 
Republic relative to Viet Nam, which has 13.3% of a standard deviation (.008-hectare bias). In all 
countries except Viet Nam, the inverse land size–productivity relationship is upwardly biased for lower 
land area self-reported measures relative to GPS measures. In Viet Nam, the intensive margin of 
organic fertilizer use is negatively biased by self-reported measurement error by 30.4 percentage 
points. As remotely sensed data becomes publicly available, it may become a less expensive alternative 
to link to survey data than rely on GPS measurement. 
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I. INTRODUCTION 

More than 70% of the world’s poor reside in rural areas of developing countries and rely on agriculture 
as their main source of livelihood (IFAD 2010). Research has shown that lack of access to land could 
constrain poor households from emerging from poverty (Deininger 2003; Binswanger, Deininger, and 
Feder 1995), and that productivity gains from increased production per unit of land are central to 
macro theories of structural transformation. Timely, cost-effective, and high-quality land 
measurement data through national statistical reporting therefore play an important role in the 
formulation of policies targeting poverty reduction, agricultural growth, and the welfare of agricultural 
households. 

From an analytical perspective, plot sizes are important because they serve as an input in 
agricultural production functions, which are used to estimate the return to inputs and factors of 
production. Standard economic theory predicts that the marginal factor productivity should be the 
same for both larger and smaller agricultural plots. However, in the empirical literature from different 
parts of the world, a puzzling relationship observed is the existence of an inverse farm size–
productivity relationship (Sen 1962; Mazumdar 1965; Bardhan 1973; Collier 1983; Carter 1984; van Zyl, 
Binswanger, and Thirtle 1995; Heltberg 1998; Akram-Lodhi 2001; Benjamin and Brandt 2002; Rios and 
Shively 2005; Kimhi 2003; Barrett, Bellemare, and Hou 2010; Larson et al. 2014).  

The literature on the inverse farm size–productivity relationship is extensive with several 
theoretical explanations. Eswaran and Kotwal (1985) and Feder (1985) theorized that households with 
larger farms hire labor given their limited endowment of household labor. Hired labor requires 
supervision costs which may increase more than proportionally as farm size increases, leading to lower 
production efficiency on larger farms. A second chain of literature focuses on missing markets for land, 
labor, credit, and insurance markets which leads to differences in land productivity between 
households (Assunação and Ghatak 2003, Barrett 1996, Carter and Wiebe 1990, Eswaran and Kotwal 
1986). Omitted variable bias, such as inability to accurately capture soil quality or farmer ability serves 
as a third explanation (Barrett, Bellemare, and Hou 2010; Bhalla and Roy 1988; Chen, Huffman, and 
Rozelle 2011). However, these theories have not been successfully corroborated across different 
contexts using empirical data. 

A fourth explanation, which has recently received attention in the empirical literature due to 
advancement in land area measurement techniques, is that the inverse relationship is a statistical 
artefact stemming from a mismeasurement in land size, thereby leading to a spurious correlation 
(Lamb 2003). Given that land size is an independent variable in econometric estimation of agricultural 
production functions and that classical measurement error in independent continuous variables could 
potentially bias parameter estimates (Wooldridge 2008), there is room for misinterpretation of an 
important and policy-relevant relationship between productivity and land size.  While ruling out land 
measurement error as a spurious correlation has been the prominent focus of many land measurement 
studies in Africa (for example, Carletto, Savastano, and Zezza 2013; Carletto, Gourlay, and Winters 
2015; Dillon et al. 2017), the hypothesis has not been carefully tested in the Asian agricultural context.  

The most common land area measurement technique implemented in virtually all agricultural 
surveys is farmer self-reporting because it is collected inexpensively as a single question within a 
questionnaire. The compass-and-rope method is a second option where two or three enumerators 
measure the area of a plot using tools such as calculator, compass, measuring tape, and ranging poles. 
While it is considered as the gold standard for land measurement (FAO 1982), it is workload intensive 
from a field implementation perspective. Global Positioning System (GPS) devices have more recently 
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been used in agricultural surveys but still require walking along the boundary of a plot to obtain an area 
estimate, thereby increasing survey time and costs.  

Surveys relying on self-reported land size relative to GPS data and compass-and-rope 
measurement techniques have established significant effects on levels of landholdings reported by 
households. Few studies have found statistically significant differences between GPS and self-reported 
land sizes (Goldstein and Udry 1999; Carletto, Savastano, and Zezza 2013; Carletto, Gourlay, and 
Winters 2015). Goldstein and Udry (1999), in their data from the eastern region of Ghana found a 
correlation of 0.15 between GPS and self-reported land size. This finding is attributed to field 
measurement being historically based on length and not area by the authors.  

Carletto, Savastano, and Zezza (2013) report significant differences between self-reported and 
GPS land size in Uganda which varies by plot size. In their study, self-reported estimates are close to 
GPS measures for medium-sized plots (between 0.60 and 1.44 hectares) but large for smaller and 
larger-sized plots. They attribute the differences in GPS and self-reported land size to plot manager 
and other plot-level characteristics such as age of the household head, whether the plot was in dispute 
with relatives and rounding off of self-reported production. Similarly, Carletto, Gourlay, and Winters 
(2015) find that self-reported plot sizes were larger than GPS measures for smaller plots, with an 
opposite trend for larger plots, suggesting systematic overreporting of plot sizes for smaller plots and 
underreporting for larger plots. They also find a consistent association between the rounding of farmer 
estimates and the difference between GPS and self-reported plot sizes in all four countries. Dillon et al. 
(2017) also find that GPS measurements of land area are similar to compass-and-rope estimates and 
more reliable than farmer estimates, where self-reported measurement bias leads to overreporting 
land sizes of small plots by 83% and underreporting of large plots by 21% of the compass-and-rope 
estimate. Their study in Nigeria finds that the error observed across land measurement methods is 
nonlinear, is not resolved by trimming outliers, and results in biased estimates of the inverse land size–
productivity relationship. A key econometric advance in this paper is the ability to control for plot fixed 
effects which may bias parameter estimates.  They also investigate input demand functions that rely 
on self-reported land measures and find that these measures significantly underestimate the effect of 
land on input utilization including fertilizer and household labor. The similarity of estimates between 
GPS and compass-and-rope methods is also observed by Schøning et al. (2005). 

Improved survey methods and technological capacity in the field and remote sensing data are 
opening new possibilities for agricultural statistics. Agricultural statistics derived from remotely sensed 
data have been used primarily to compare land use information and changes over time, though 
applications to yields (Lobell, Cassman, and Field 2009) and economywide outcomes such as food 
security are becoming more common (Grace, Husak, and Bogle 2014).  Lobell, Cassman, and Field 
(2009); Grace et al. (2012); Grace, Husak, and Bogle (2014); and Husak and Grace (2016) apply 
remote sensing to the estimation of yields, land use, and total agricultural production for a region, but 
are limited by their ability to link this data to specific households and other inputs in the agricultural 
production process.     

Carletto et al. (2016b, pp. 28) conclude their analysis of land measurement bias by arguing 
that, “little research is to date available on the use of remote sensing imagery for area measurement in 
household surveys. As technology advances and image resolution improves along with affordability, 
the use of this method becomes more feasible, and is likely to hold promise particularly for the 
measurement of large plots.” While papers such as Carletto, Savastano, and Zezza (2013) and Dillon et 
al. (2017) have explored the relationship between survey design, land measurement bias, and their 
implications for econometric specifications, little evidence to date has been provided to draw 
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comparisons across self-reported, GPS, and satellite data.  Additionally, the cited surveys have 
quantified land measurement error across several African countries, though measurement errors may 
vary across production systems and differences across contexts.  External validity of these results in 
the Asian context merits its own analysis due to differences in how farmer’s may perceive land area 
which could be related to types of crops, farming systems, or cultural norms.   

This paper contributes to this literature by presenting the results of a validation study that 
relied on farmer self-reports, GPS-measured plots, and plots measured using remote sensing data from 
four pilot provinces of four countries: the Lao People’s Democratic Republic (Lao PDR), the 
Philippines, Thailand, and Viet Nam. We find no differences between remotely sensed data and GPS 
measures taken by field teams. Given the lower cost of publicly available remotely sensed data relative 
to GPS data, linking household surveys to these data sources does not induce additional measurement 
error, particularly for field crops and irrigated areas where plot boundaries are spatially distinguished.  
We also find that the magnitude of self-reporting bias is nonlinear and varies across countries, with the 
largest magnitude of self-reporting bias of 130% of a standard deviation (2.2-hectare bias) in the Lao 
PDR relative to Viet Nam, which exhibits 13.3% of a standard deviation (.008-hectare bias). In all 
countries except Viet Nam, the inverse land size–productivity relationship is upwardly biased by lower 
land area self-reported measures relative to GPS measures. In Viet Nam, the intensive margin of 
organic fertilizer use is negatively biased by self-reported measurement error by 30.4 percentage 
points.  

The next section of the paper describes the study areas, while the third section presents the 
data used in this study and fieldwork. The fourth section presents the econometric strategy, and the 
fifth section showcases the key results. The final section discusses the implications of this study and 
the prospects for integrating remote sensing into national household surveys.   

II. STUDY AREA 

This study was undertaken in four pilot provinces in four countries: Savannakhet Province (Lao PDR), 
Nueva Ecija Province (Philippines), Ang Thong Province (Thailand), and Thai Binh Province (Viet 
Nam). The four countries were selected as part of a technical assistance (TA) project of the Asian 
Development Bank (ADB), which was designed to promote the use of satellite-based technology in 
estimating rice area and production.1 The provinces were chosen in consultation with the counterpart 
government agencies using the criteria of the existence of substantial extent of contiguous paddy rice 
area.  

Thai Binh Province, located in the northeast coast of Viet Nam, has a land area of 154,200 
hectares. It is a key paddy rice production area in the Red River Delta region, with approximately 52% 
of land in the province dedicated to paddy rice farming.2 The Red River Delta region also ranks second 
in terms of total paddy rice production in Viet Nam (FAO 2011a), just behind the Mekong River region. 
Thai Binh is located in a typical tropical monsoon area, with one key rainy season from May to 
October. The total rainfall in Thai Binh in the rainy season of 2015 was 1,445 millimeters (mm), 
accounting for approximately 85% of the total annual rainfall for the same year in the province. The 

                                                                 
1  This TA was implemented by ADB in partnership with government agricultural ministries and national statistical offices. The TA has 

three major components: (i) development of customized software applications and methodology to estimate paddy rice cultivation area 
and crop production based on data obtained through crop cutting studies at the provincial level; (ii) training of counterpart staff in the 
four pilot countries; and (iii) development of online training program on the use of satellite data for agricultural and rural statistics (ADB 
2013). 

2  ADB estimates are from administrative data provided by the General Statistics Office, Viet Nam. 
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average temperature ranges from 19°C to 32°C. Paddy rice is grown twice per year: once in the summer 
(mid-June to end-October) then in the winter (mid-December to end-May).  

Nueva Ecija Province, a landlocked province in the Central Luzon region of the Philippines, has 
a land area of about 575,100 hectares. It is often referred to as the rice granary of the Philippines given 
that it is the largest producer of rice in the country.3 Nueva Ecija is in a typical tropical monsoon area, 
with one key rainy season from May to October. The total rainfall in Nueva Ecija in the rainy season of 
2015 was 2,172.89 mm, accounting for approximately 87.6% of the total annual rainfall for the same 
year. The average temperature ranges from 28°C to 34°C. Paddy rice is grown twice per year: once in 
the dry season (mid-June to end-October) and then in the wet season (mid-December to end-May). 
The province was affected by a powerful and devastating typhoon called Koppu (locally known as 
Lando), which formed on 12 October 2015 and dissipated on 21 October 2015, coinciding with the TA 
project activities. Administrative data sources indicated a decrease in rice production of approximately 
35% in the fourth quarter of 2015 compared to the same reference period in 2014.4 

Ang Thong Province, located in the central region of Thailand, has a land area of 96,840 
hectares. The name "Ang Thong" means "Gold Basin,” referring to the color of harvested rice and the 
basin-like geography of the area. The climate in Ang Thong is characterized by the southwest 
monsoon that brings heavy rainfall from May to October; by the northeast monsoon that is relatively 
dry and cool from October to February; and by the transitional period, which brings heavy 
thunderstorms from March to April. The total rainfall in the Central Plain, where Ang Thong is located, 
in the rainy season of 2009 was 1,100 mm, accounting for approximately 68% of the total annual 
rainfall for the same year (FAO 2011a).  The average temperature in the Central Plain during the rainy 
season is 27°C. Paddy rice is grown twice per year: once during the rainy season from May to 
September and a second time during the dry season of November to April. 

Savannakhet, the largest province in the Lao PDR, is located in the southwestern part of the 
country and has a land area of 2,177,400 hectares.  Savannakhet is a key paddy rice production area 
with a significant proportion of the land in the province allocated to the production of rice (Ministry of 
Agriculture and Forestry 2014). The climate in Savannakhet is typically tropical with a rainy season 
from mid-April to mid-October dominated by the humid southwest monsoon. The average annual 
rainfall is 1,834 mm but ranges from 1,300 mm in the northern valleys to 3,700 mm at high elevations 
in the south (FAO 2011b). Paddy rice is grown twice per year in the Lao PDR: once during the wet 
season, and again during the dry season.  

III. DATA DESCRIPTION 

Crop cutting and farmer recall surveys were implemented in each pilot province. The crop cutting 
survey was implemented during the harvesting period associated with the rainy season of 2015, while 
the farmer recall survey was implemented 2 to 3 months after the harvesting was completed to obtain 
details on crop sales, storage, and postharvest losses.  

An area frame was utilized for the crop cutting survey and constructed based on the expected 
likelihood of finding paddy rice. The sampling frame was constructed using two sources of digitized rice 
maps to implement the stratification process: rice extent maps using 2015 Moderate Resolution 

                                                                 
3  An average of 8.4% of total annual rice production from 2000 to 2016 comes from Nueva Ecija, based on ADB calculations using 

Philippines Statistics Authority data. 
4  ADB estimates are from administrative data provided by the Philippine Statistics Authority. 



Land Measurement Bias: Comparisons from Global Positioning System, Self-Reports, and Satellite Data   |   5 

Imaging Spectroradiometer data produced by the International Rice Research Institute;5 and  land use 
maps produced by the European Space Agency under its GlobCover initiative.6 Stratification into four 
categories (high, medium, low, and no probability of rice) was conducted prior to the selection of 
meshes to improve statistical efficiency and lower fieldwork costs. The primary sampling unit in this 
study was a 200 m by 200 m square “mesh” that is spatially defined on a digitized satellite image map. 

A three-stage stratified sampling methodology was employed in this study in all four study 
areas. In the first sampling stage, a stratified sample of 120 meshes was selected.  A random sample of 
reserve meshes that could be used for possible replacement was also selected in each stratum.  The 
number of selected meshes was higher in the stratum where the expectation of finding rice growing 
plots was highest, and lower in areas with low or no likelihood of finding rice growing plots. All sample 
meshes were checked in the field to determine whether rice was planted in any plot within the mesh 
boundaries.  Only sample meshes with rice were enumerated for the two surveys. For the second 
sampling stage, a listing of all rice plots identified with at least part of their area within the boundaries 
of each sample mesh was conducted. All the plots where rice would be harvested during the rainy 
season of 2015 were eligible to be selected at the second sampling stage.  

A high-resolution, detailed, printed Google Earth map of each of the square sample meshes 
was used to identify the number of plots that fall within each mesh. Landmarks on the printed map 
were matched to what was observed on the field. The plot boundaries and the respective owners were 
identified with the help of the village heads and farmers, and delineated on the printed map. Only plots 
that were either completely or partially inside the sample mesh and were to be harvested in the rainy 
season of 2015 were included in the listing process. A sample of four plots per mesh was randomly 
selected for crop cutting from the list of plots that met the selection criterion. For those sample 
meshes where four or less plots were eligible for selection, crop cutting was done in all plots. 

For plots eligible for crop cutting, plot size information was collected using three methods to 
obtain independent estimates: (i) self-report from farmers; (ii) mapping out the area using a GPS 
device; and (iii) printing a high-resolution Google Earth satellite image of the study area on paper and 
requesting farmers to identify plot boundaries, subsequently digitized using geographic information 
system (GIS) software. Farmers were asked to identify their plot boundaries on the printed paper and 
provide their own estimates for plot size prior to conducting the GPS mapping of their plots to avoid 
biases in self-reporting (see appendix). Sampling weights for each of the stages were constructed and 
utilized for analysis.  

Farmer recall surveys were implemented a few months after the conduct of the crop cutting 
survey. Detailed modules were constructed and adapted to the local context of each country. The 
questionnaires were translated into local languages and administered on paper in the four countries. In 
addition to collecting production-related data, ancillary information on the household, plot 
characteristics, crop variety, etc. were also collected. The questionnaires were verified by field 
supervisors and subsequently returned to the headquarters of each of the government agencies where 
double data entry and data cleaning activities were undertaken.   

                                                                 
5  International Rice Research Institute has been developing remote sensing-based maps of rice systems in Asia as part of its contribution 

to various projects that need good baseline data on rice (http://irri.org/our-work/research/policy-and-markets/mapping/remote-sensing-
derived-rice-maps-and-related-publications). 

6  GlobCover began in 2005 in partnership with the Joint Research Center (of the European Commission), United Nations Environment 
Programme, Food and Agriculture Organization of the United Nations, and other institutions. The aim of the project was to develop a 
service capable of delivering global composites and land cover maps using as input observations from a sensor onboard the 
Environmental Satellite mission (http://due.esrin.esa.int/page_globcover.php). 
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IV. ECONOMETRIC STRATEGY 

The paper uses three main econometric specifications. First, we estimate land measurement biases 
stemming from the different land measurement methods.  Establishing these biases, we then estimate 
the implications of these biases in two other specifications. The second specification estimates the 
inverse land size relationship to assess the importance of land measurement error, while the third 
specification estimates the effect of land measurement bias on input demand functions.   

In the first econometric specification, we estimate land measurement bias between self-
reported (SR), GPS, and remote-sensed (Google) plot observations. In equation (1), land size is 
measured for each validation sample plot with three observations: one for SR, GPS, and Google using a 
similar plot fixed effects specification as Dillon et al. (2017). This allows us to directly compare all three 
measurements in a single regression. In equation (1),  ��  is plot size in hectares according to 
measurement � � ���, ���, �������, where �� and ������ are indicator variables for self-reported 
and remotely sensed measurement observations, respectively;  �� represents plot fixed effects; and �� 
is the idiosyncratic error term. The excluded category is GPS measurement as we take it as the 
benchmark plot size measure.  Because we have multiple observations for each plot in the validation 
sample which are stacked by measurement technique, we can estimate equation (1) with plot fixed 
effects, which will capture the influence of any observed or unobserved plot characteristics on plot size 
for each measurement. Since land measurement biases have been demonstrated to vary across the 
land distribution, we also include measurement method by land quartile interactions, denoted by 
��������, in the regression to capture potential nonlinearity in land measurement bias.  

 �� � ���� +  �������� +  ��(�������� � ��) +  ��(�������� � ������)  + �� + �� (1) 

Estimates of this specification have the econometric advantage of controlling for all observable 
and unobservable characteristics, which might include plot characteristics such as topography or 
distance to the household, farmer, or household characteristics.  The disadvantage of the plot fixed 
effect specification is that policy recommendations related to improving measurement could benefit 
from direct estimates of certain plot characteristics on the level of measurement error.  If reported plot 
characteristics are correlated with unobservables, then these estimates would be biased, negating their 
policy relevance.   

In the second and third econometric specifications, we estimate the effect of the land 
measurement biases on the inverse land size–productivity relationship and input demand functions. 
The inverse land size–productivity relationship has been well documented by Carter (1984); Barrett 
(1996); Assunação and Braido (2007); Barrett et al. (2010); Carletto, Savastano, and Zezza (2013); 
and Carletto, Gourlay, and Winters (2015), among others. Using self-reported plot size and Google 
measurements, we estimate equation (2) where �������  is the natural logarithm of total output value 
of ��� on plot �, in the remotely sensed area mesh m, divided by plot size (������), where the 
observations are stacked such that each plot has an observation using GPS, SR, and Google 
measurement techniques and quartiles by land measurement method interactions are included.  The 
previous inverse land size–productivity relationship already suggests there are nonlinearities in input 
utilization and efficiency, which may be related to farmer self-reports (Dillon et al. 2017). 

ln ������� � �� ln ������ + ��(�� � ln ������) + ��(������ �  ln ������) + (2) 
��(�������� � �� � ln ������) + ��(�������� � ������ � ln ������) + �� + ���  



Land Measurement Bias: Comparisons from Global Positioning System, Self-Reports, and Satellite Data   |   7 

In this specification, we also include “mesh” fixed effects, the lowest level of variation across all 
plot observations to account for unobserved variation such as input or output markets on the inverse 
land size relationship. In the inverse land size–productivity relationship estimates, we cannot include 
plot fixed effects, a lower level of aggregation than the mesh, as the key variable of interest is the 
relationship between plot size and yield.  The standard finding in the literature is a negative estimate of 
�, or decreasing productivity returns to scale in plot size.  Previous work on land measurement bias in 
the inverse land size–productivity relationship (Barrett et al. 2010; Carletto, Gourlay, and Winters 
2015; and Dillon et al. 2017) confirm in multiple African contexts that land measurement bias does not 
explain the inverse land size relationship, but it does bias its magnitude.   

The last specification (equation 3) focuses on estimation of the intensive and extensive margin 
of input demand for organic fertilizer, inorganic fertilizer, and agricultural labor.  Plot-level investments 
may be related to the size of the farm as production technologies change with increasing farm size. 
Deininger and Jin (2006) find that farmers with more land per capita are less likely to adopt the long-
term investment of planting trees on their farm. Marenya and Barrett (2007), Erenstein (2006), and 
Thuo et al.  (2011) found that farmers that cultivate more land were more likely to invest in improved 
inputs such as fertilizer, herbicides, pesticides, and improved seed varieties.  The input demand 
specification is similar to the inverse land size–productivity relationship specification where the input 
variable indicates use of fertilizer, herbicide or pesticide, or hired labor on plot as either an indicator or 
the input quantity of the variable per hectare. 

������� � �� �� ������ � ����� � �� ������� � ��������� �  �� ������� � (3) 
����������� � �� � �� ������� � ����������� � ������ � �� ������� � �� � ���    

V.  MAIN RESULTS 

A. Descriptive Results 

Tables 1 and 2 describe household and plot-level characteristics for each sample by country.  As we 
focus analysis on within-country comparisons by plot in this validation study, we do not conduct 
balancing tests across countries as the samples are not expected to be similar by design.  Differences in 
socioeconomic status and production systems are reflected in differences in descriptive statistics 
across countries.  This is evident by comparing such variables as household size or plots owned per 
household in Table 1. Household size varies from 5.57 people per household in the Lao PDR relative to 
3.68 members per household in Viet Nam. The number of rice plots held per household out of the four 
countries is the lowest in the Philippines (1.38 per household), and the largest in Viet Nam (2.93 per 
household). However, the average size of rice plots is the lowest in Viet Nam (0.55 hectares) and 
largest in Thailand (3.76 hectares).    

Plot-level characteristics also reveal interesting differences by country (Table 2).  
Landownership of plots is high in the Lao PDR (68%) and Viet Nam (82%), but much lower in the 
Philippines (54%) and Thailand (38%). In the Philippines, the “buwisan” system of landownership is 
prevalent (19%), while land rental is quite frequent in Thailand (45%).  Labor allocation across 
countries also corresponds to differences in production systems and landownership. Hired labor during 
the agricultural season is low in Thailand (17.29 days), but higher in the Lao PDR (44.31 days) and Viet 
Nam (53.98 days).  A striking difference is found in the Philippines where farmers hire labor  
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for 76 days, primarily for land preparation and planting of rice.  Input utilization also varies by country 
with half the plots using inorganic fertilizer in the Lao PDR with the other half use organic fertilizer.  All 
plots used inorganic fertilizer in the Philippines, Thailand, and Viet Nam.  The intensities of inorganic 
fertilizer use varied considerably by country, with Viet Nam using the highest number of kilograms per 
hectare (kg/ha) at 986 kg/ha, and the Lao PDR using the lowest amount (361 kg/ha). 
 

Table 1: Household-Level Summary Statistics 

LAO PHI VIE THA

  
Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

Average household size 5.57 4.38 3.68 3.76
  (2.22) (1.93) (1.44) (1.32)
Average number of plots owned by household 3.19 1.40 3.00 2.77 
  (2.06) (0.76) (1.37) (1.59) 
Average number of rice plots owned by household 2.57 1.38 2.93 2.76 
  (1.68) (0.74) (1.36) (1.60) 
Average size of plots owned by household in hectares 4.00 2.27 0.55 3.78 
  (2.50) (1.68) (4.68) (2.99) 
Average size of rice plots owned by household in hectares 3.30 2.24 0.55 3.76 
  (2.41) (1.66) (4.68) (2.99) 
Number of households 94 235 251 117 

LAO = Lao People’s Democratic Republic, PHI = Philippines, SD = standard deviation, THA = Thailand, VIE = Viet Nam. 
Source: Authors’ estimates.  

 
Table 2: Plot-Level Summary Statistics 

  

LAO PHI VIE THA
Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

Land tenure - Owned or co-owned* 0.68 0.54 0.82 0.38
 (0.47) (0.5) (0.39) (0.49)

Land tenure - Right to use or co-use* 0.02 0.03 0.03 0.01
 (0.15) (0.18) (0.17) (0.10)

Land tenure - Rented-out* 0.00 0.01 0.12 0.45
 (0.00) (0.12) (0.33) (0.5)

Land tenure - Rented-in* 0.04 0.03 0.02 0.16
 (0.19) (0.18) (0.13) (0.37)

Land tenure - Taken in (free)* 0.26 0.00 0.01 0.00
 (0.44) (0.00) (0.12) (0.00)

Land tenure - Buwisan* 0.00 0.19 0.00 0.00
 (0.00) (0.4) (0.00) (0.00)
Land tenure - Other* 0.00 0.19 0.00 0.00
 (0.00) (0.39) (0.00) (0.00)
Irrigation* 0.03 0.80 0.97 1.00
 (0.18) (0.40) (0.17) (0.02)
Average plot size - Farmer's estimate in hectares 2.54 1.40 0.09 1.18
 (1.68) (1.07) (0.06) (0.77)
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LAO PHI VIE THA
Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

Log (Average plot size - Farmer's estimate) 0.62 0.00 –2.68 –0.03
 (0.95) (0.93) (0.69) (0.64)

Average plot size - GPS in hectares 0.66 1.30 0.08 0.74
 (0.62) (1.06) (0.06) (0.50)

Log (Average plot size - GPS) –0.88 –0.12 –2.71 –0.50
 (1.07) (0.99) (0.69) (0.64)

Average plot size - Google in hectares 0.64 1.29 0.09 0.75
 (0.59) (1.06) (0.05) (0.50)

Log (Average plot size - Google) –0.88 –0.13 –2.64 –0.48
 (1.04) (0.99) (0.63) (0.64)

Plot using organic fertilizer* 0.53 0.10 0.15 0.14
 (0.50) (0.30) (0.36) (0.35)

Average use of organic fertilizer (kg/ha) 4,334.37 1,466.55 9,068.54 1,432.16
 (17,165.83) (3,003.43) (11,357.65) (1,192.8)

Log - Average use of organic fertilizer (kg/ha) 6.30 5.11 8.21 6.61
 (2.10) (2.69) (1.55) (1.50)

Plot using inorganic fertilizer* 0.54 1.00 0.96 1.00
 (0.50) (0.00) (0.20) (0.03)

Average use of inorganic fertilizer (kg/ha) 360.82 542.15 985.82 548.67
 (391.57) (728.53) (1,448.05) (1,266.30)

Log - Average use of inorganic fertilizer (kg/ha) 5.38 5.99 6.57 5.88
 (1.08) (0.68) (0.78) (0.85)

Average number of days - Total hired labor 44.31 75.98 53.98 17.29
 (48.26) (874.10) (77.15) (14.37)

Log (Average number of days - Total hired labor) 2.97 3.54 3.48 2.35
    (1.52) (0.98) (1.00) (1.21)
Average number of days - Hired labor for land 

preparation 
3.42 58.23 37.30 2.30

(3.86) (1,232.61) (37.58) (2.00)
Log (Average number of days - Hired labor  

for land preparation) 
0.59 1.74 3.29 0.62

(1.24) (1.16) (0.81) (0.61)
Average number of days - Hired labor  

for planting  
48.00 33.95 35.59 6.92

(39.96) (53.75) (34.93) (2.88)
Log (Average number of days - Hired labor  

for planting)  
3.22 3.17 3.25 1.86

(1.42) (0.82) (0.77) (0.40)
Average number of days - Hired labor for weeding 1.88 3.46 21.70 7.45
 (4.73) (21.02) (3.88)
Log (Average number of days - Hired labor  

for weeding) 
0.63 0.70 2.75 1.90

(0.98) (0.79) (0.46)
Average number of days - Hired labor  

for nonharvest 
0.00 10.88 27.34 6.35

(14.43) (27.92) (2.48)
Log (Average number of days - Hired labor  

for non-harvest) 
0.00 1.66 2.99 1.69

(1.21) (0.81) (0.75)
Average number of days - Hired labor for harvest 15.19 27.08 - 5.21
 (25.96) (32.08) - (4.09)
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LAO PHI VIE THA
Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

Log (Average plot size - Farmer's estimate) 0.62 0.00 –2.68 –0.03
 (0.95) (0.93) (0.69) (0.64)

Average plot size - GPS in hectares 0.66 1.30 0.08 0.74
 (0.62) (1.06) (0.06) (0.50)

Log (Average plot size - GPS) –0.88 –0.12 –2.71 –0.50
 (1.07) (0.99) (0.69) (0.64)

Average plot size - Google in hectares 0.64 1.29 0.09 0.75
 (0.59) (1.06) (0.05) (0.50)

Log (Average plot size - Google) –0.88 –0.13 –2.64 –0.48
 (1.04) (0.99) (0.63) (0.64)

Plot using organic fertilizer* 0.53 0.10 0.15 0.14
 (0.50) (0.30) (0.36) (0.35)

Average use of organic fertilizer (kg/ha) 4,334.37 1,466.55 9,068.54 1,432.16
 (17,165.83) (3,003.43) (11,357.65) (1,192.8)

Log - Average use of organic fertilizer (kg/ha) 6.30 5.11 8.21 6.61
 (2.10) (2.69) (1.55) (1.50)

Plot using inorganic fertilizer* 0.54 1.00 0.96 1.00
 (0.50) (0.00) (0.20) (0.03)

Average use of inorganic fertilizer (kg/ha) 360.82 542.15 985.82 548.67
 (391.57) (728.53) (1,448.05) (1,266.30)

Log - Average use of inorganic fertilizer (kg/ha) 5.38 5.99 6.57 5.88
 (1.08) (0.68) (0.78) (0.85)

Average number of days - Total hired labor 44.31 75.98 53.98 17.29
 (48.26) (874.10) (77.15) (14.37)

Log (Average number of days - Total hired labor) 2.97 3.54 3.48 2.35
    (1.52) (0.98) (1.00) (1.21)
Average number of days - Hired labor for land 

preparation 
3.42 58.23 37.30 2.30

(3.86) (1,232.61) (37.58) (2.00)
Log (Average number of days - Hired labor  

for land preparation) 
0.59 1.74 3.29 0.62

(1.24) (1.16) (0.81) (0.61)
Average number of days - Hired labor  

for planting  
48.00 33.95 35.59 6.92

(39.96) (53.75) (34.93) (2.88)
Log (Average number of days - Hired labor  

for planting)  
3.22 3.17 3.25 1.86

(1.42) (0.82) (0.77) (0.40)
Average number of days - Hired labor for weeding 1.88 3.46 21.70 7.45
 (4.73) (21.02) (3.88)
Log (Average number of days - Hired labor  

for weeding) 
0.63 0.70 2.75 1.90

(0.98) (0.79) (0.46)
Average number of days - Hired labor  

for nonharvest 
0.00 10.88 27.34 6.35

(14.43) (27.92) (2.48)
Log (Average number of days - Hired labor  

for non-harvest) 
0.00 1.66 2.99 1.69

(1.21) (0.81) (0.75)
Average number of days - Hired labor for harvest 15.19 27.08 - 5.21
 (25.96) (32.08) - (4.09)
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LAO PHI VIE THA
Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

Log (Average number of days - Hired labor  
for harvest) 

1.91 2.74 - 1.41
(1.19) (1.14) - (0.72)

Average yield (Production/Crop cutting area) 1,515.21 3,799.68 7,164.98 5,676.58
(1,985.84) (1,601.05) (6,109.30) (3,081.50)

Log (Average yield - Production/Crop cutting 
Area) 

6.73 8.10 8.62 8.44
(1.04) (0.63) (0.80) (0.84)

Average yield (Production/Area from GPS) 6,979.68 5,348.58 7,124.14 9,258.29
(15,430.26) (10,001.74) (5,621.15) (8,815.29)

Log (Average yield - Production/Area  
from GPS) 

8.23 8.23 8.61 8.80
(1.01) (0.74) (0.81) (0.89)

Average yield (Production/Area from Google 
Earth) 

6,723.22 5,409.10 6,920.57 9,172.15
(13,579.83) (10,485.96) (5,374.03) (8,349.09)

Log (Average yield - Production/Area  
from Google Earth) 

8.23 8.23 8.58 8.81
(0.99) (0.74) (0.81) (0.88)

Average dollar value of yield (Production/Crop 
cutting area) 

1,862.82 1,112.17 2,164.16 1,108.54
(8,626.49) (533.03) (2,558.41) (675.35)

Log - Average dollar value of yield 
(Production/Crop cutting area) 

5.39 6.77 7.32 6.81
(1.69) (1.08) (0.88) (0.71)

Average dollar value of yield (Production/Area 
from GPS) 

6,208.32 1,591.71 2,230.08 1,846.48
(28,617.17) (3,198.52) (3,036.78) (1,803.26)

Log - Average dollar value of yield 
(Production/Area from GPS) 

6.82 6.90 7.32 7.16
(1.61) (1.16) (0.88) (0.85)

Average dollar value of yield (Production/Area 
from Google Earth) 

6,358.04 1,614.30 1,981.53 1,833.50
(28,623.63) (3,368.17) (1,982.56) (1,725.88)

Log - Average dollar value of yield 
(Production/Area from Google Earth) 

6.82 6.90 7.28 7.17
(1.60) (1.17) (0.85) (0.84)

Number of plots 135 247 253 83

GPS = Global Positioning System, kg/ha = kilogram per hectare, LAO = Lao People’s Democratic Republic, PHI =       
Philippines, SD = standard deviation, THA = Thailand, VIE = Viet Nam.   
Notes: Buwisan refers to an arrangement where the operator (and his/her family) pays tax or “buwis” to the plot owner. Yield estimates were 
trimmed at the 95th percentile to remove outliers. * Denotes dummy variables. 
Source: Authors’ estimates. 

 
Table 3 provides descriptive statistics for the land measurement variables by country and 

disaggregated by land area quartile.  An interesting pattern across all four countries is the similarity 
between GPS-measured plots and Google Earth estimates. These results have important 
implications for field methods, particularly because the time and cost of GPS measurement is 
significantly larger relative to Google Earth estimates.  GPS plot measurement not only requires 
displacement to the plot from the household interviewed, but also circumscribing the plot on foot by 
an enumerator.  This can be time consuming and hazardous for heavily irrigated plots relative to 
Google Earth estimates, which only require a single GPS coordinate.  We discuss cost implications in 
more detail in the conclusion. 
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trimmed at the 95th percentile to remove outliers. * Denotes dummy variables. 
Source: Authors’ estimates. 

 
Table 3 provides descriptive statistics for the land measurement variables by country and 

disaggregated by land area quartile.  An interesting pattern across all four countries is the similarity 
between GPS-measured plots and Google Earth estimates. These results have important 
implications for field methods, particularly because the time and cost of GPS measurement is 
significantly larger relative to Google Earth estimates.  GPS plot measurement not only requires 
displacement to the plot from the household interviewed, but also circumscribing the plot on foot by 
an enumerator.  This can be time consuming and hazardous for heavily irrigated plots relative to 
Google Earth estimates, which only require a single GPS coordinate.  We discuss cost implications in 
more detail in the conclusion. 
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Table 3: Land Area Descriptive Statistics 

Area 
Quartile SR GPS Google SR-GPS 

(SR - GPS)×100 Google - 
GPS 

(Google - GPS)×100 
GPS GPS

LAO 2.54 0.66 0.64 1.88 285.48 –0.02 –2.54 
Q1 2.31 0.12 0.13 2.19 1,788.88 0.01 6.67 
Q2 2.70 0.34 0.34 2.36 699.99 0.00 0.26 
Q3 2.10 0.95 0.93 1.16 122.16 –0.02 –2.09 
Q4 3.88 1.95 1.83 1.94 99.49 –0.12 –5.95 

PHI 1.40 1.30 1.30 0.10 7.67 –0.01 –0.43 
Q1 0.66 0.40 0.40 0.25 63.35 0.00 –1.10 
Q2 1.14 1.04 1.03 0.10 9.94 –0.01 –0.54 
Q3 1.82 1.66 1.66 0.16 9.57 –0.01 –0.35 
Q4 2.98 3.44 3.43 –0.46 –13.33 –0.01 –0.23 

VIE 0.09 0.08 0.09 0.00 1.68 0.00 2.49 
Q1 0.04 0.03 0.03 0.01 28.94 0.01 17.71 
Q2 0.06 0.05 0.06 0.01 15.56 0.01 10.64 
Q3 0.10 0.10 0.10 0.00 0.02 0.00 1.58 
Q4 0.15 0.17 0.16 –0.01 –7.52 0.00 –2.81 

THA 1.18 0.79 0.80 0.39 49.00 0.01 1.50 
Q1 1.22 0.33 0.38 0.89 271.87 0.05 15.47 
Q2 0.97 0.61 0.62 0.36 57.80 0.01 1.35 
Q3 0.90 0.86 0.83 0.04 4.44 –0.03 –2.96 

  Q4 1.72 1.63 1.64 0.09 5.53 0.00 0.26 

GPS = Global Positioning System, LAO = Lao People’s Democratic Republic, PHI = Philippines, Q = quartile, SR = self-reporting, THA = 
Thailand, VIE = Viet Nam. 
Source: Authors’ estimates.  

 
Descriptive differences between the self-reported and GPS measures are also informative, 

especially relative to the recent land measurement validation studies in sub-Saharan Africa.  In 
Viet Nam, differences between self-reported and GPS-measured plots are minimal.  This is to be 
expected given the socialist structure of the country with well-documented land records. In the 
Lao PDR, the Philippines, and Thailand, self-reported land size significantly diverges from GPS-
measured land size. Though these differences are nonlinear across the land size distribution, these 
differences are not uniformly nonlinear in the direction of the reporting bias.  For example, in the 
Lao PDR, self-reported plots diverge significantly from estimates at the two lowest quartiles, 2.2 
and 2.4 hectares for quartiles 1 and 2, respectively. A similar pattern is found in Thailand, though 
with lower magnitudes of divergence between self-reported and GPS measured.  Farmers in the 
lower two quartiles of the land distribution overreport by 0.9 and 0.4 hectares in quartiles 1 and 2, 
respectively, relative to GPS measures.  In the Philippines, farmers underestimate land size for the 
highest quartile of landholdings by 0.5 hectares.  These descriptive statistics are also presented as 
densities of the land distribution in the figure, disaggregated by measurement method and 
country, and confirm the trends in the descriptive table. The use of nonstandard measurement 
units, household and plot manager characteristics (such as education level, age, gender), rounding 
error, and tenure status could all factor into the divergence between self-reports and GPS 
(Carletto, Savastano, and Zezza 2013). 
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B. Land Measurement Biases 

Descriptive reporting differences and the nonlinearity of these differences are not sufficient to 
conclude that there is a causal difference between reporting methods.  As described in the 
econometric strategy section, concerns about unobserved land characteristics, which could be 
correlated with farmer characteristics that influence reporting, may bias estimates.  An advantage of 
this validation study is multiple methodological observations per plot, which permits us to estimate 
plot fixed effects.  Land measurement bias estimates controlling for plot fixed effects are reported in 
Table 4.  Specifying equation (1) in either level or logs of the land area estimates results in consistent 
upward bias in land reporting when farmers self-report relative to GPS measures. The magnitude of 
self-reporting bias does vary across countries with the largest magnitude of self-reporting bias of 
130% of a standard deviation (2.2-hectare bias) in the Lao PDR relative to Viet Nam, with 13.3% of a 
standard deviation (.008-hectare bias).  As observed with the land size descriptive statistics in Table 
3, self-reported land bias is nonlinear across the land distribution. Self-reported landholdings are 
downward biased relative to GPS measures of land size in the highest quartiles of the land 
distribution. These results are relatively robust to the specification choice of using either levels or 
logs of land area. 
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Figure 1: Distribution for Differences in Plot Area

GPS = Global Positioning System, ha = hectare, LAO = Lao People’s Democratic Republic, PHI = Philippines, THA = Thai-
land, VIE = Viet Nam.
Source: Authors’ estimates.
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In comparing Google estimates to GPS estimates, we observe few statistically significant 
differences between these two measures in Table 4. However, a significant difference of 16.4 
percentage points is observed between Google and GPS in Viet Nam.  These deviations may occur 
either because of GPS measurement or Google measurement and be of larger magnitude particularly 
because plot sizes are small.  Sources of measurement bias for these two methods are not implausible. 
GPS measurement bias might include improper tracking of the field’s perimeter by enumerators, 
uncertainty by the farmer in guiding the enumerator around the land surface, or machine 
measurement errors related to the calibration of the device or the satellite coverage in any given 
measure.  In the case of Google, the accurate demarcation of the plot and its attribution to a given GPS 
coordinate could result in mismeasured plot sizes.  The resolution of the satellite could yield small 
deviations in land measures, but these are likely to be small.7   

C. Inverse Land Size–Productivity and Input Demand Results 

The land measurement biases estimated in Table 4 may result in biases in agricultural estimates of the 
inverse land size–productivity and input demand function relationships, specified in equations (2) and 
(3). These results are presented for the inverse land size–productivity function in Table 5 and by 
country for the input demand functions in Tables 6–9.  For input demand relationships, we estimate 
input demands for organic and inorganic fertilizer use as well as the total amount of hired labor during 
the agricultural season.   

The inverse land size–productivity relationship results specified in equation (2) are reported in 
logs for all variables with the yield variables reported in quantities (kilograms) of rice produced as well as 
value of rice produced.  Both sets of results are similar, as expected, since bias in harvest weight relative 
to dried and sorted granular rice sold is likely low.  A distinct result of the inverse land size–productivity 
relationship estimates across countries is the predicted inverse land size–productivity relationship. 
Measurement error related to land size reporting does not overturn the direction of the theoretical 
relationship, but biases due to self-reported measurement do vary, particularly in the largest quartile of 
the land distribution across countries.  In all countries except Viet Nam, the inverse land size–
productivity relationship is upwardly biased by lower land area self-reported measures relative to GPS 
measures. Relative to GPS measures, bias from Google measures are estimated in Table 5 in lower land 
quartiles in the Lao PDR and Thailand, but no bias in any of the countries in the higher land quartiles 
(Q2).  This is an important result as either the magnitude or the type of the bias in land reporting 
methods, if measured, does not always imply a bias in agricultural relationships estimated. 

Tables 6–9 report biases in the input demands for fertilizer and labor, estimating the effect of 
land measurement error on both the intensive and extensive margin of input use. In the Philippines 
(Table 7) and Viet Nam (Table 8), the results indicate a significant effect of self-reported measures 
relative to GPS measures on input demand, but the direction of the bias differs by country.  In Viet 
Nam, the intensive margin of organic fertilizer use is negatively biased by self-reported measurement 
error by 30.4 percentage points. The extensive margin of hired labor demand decreases by 10.7 
percentage points in response to self-reported measurement error. These biases are nonlinear as we 
observed in estimating plot measurement bias and the inverse land size–productivity relationship.  In 
the Philippines, this nonlinear bias in input demand is positive in the lower quartiles and negative in the 
largest quartiles of the land distribution.  In Viet Nam, these biases are largest in the lower land 
quartiles, remaining positive and significant, but much smaller in the larger land quartiles.  We do not 
observe a significant pattern of self-reported land bias in the input demand estimates for the Lao PDR.   
                                                                 
7  Satellite position, signal propagation, and receivers can affect GPS-based coordinates with overall position error ranging from 0.5 meter to 4 

meters (Hofmann-Wellenhof, Lichtenegger, and Wasle 2008). While the horizontal accuracy of Google Earth images has not been conducted 
systematically across the world, studies indicate an average value of 2.18 meters for root-mean-square error (Farah and Algarni 2014). 
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We also find biases in Google relative to GPS measures in the Viet Nam input demand estimates. 
Google estimates bias in the intensive margin of organic fertilizer demand downward by 32.4 percentage 
points and in the extensive margin of hired labor demand by 11.5 percentage points (Table 8). These 
results are consistent with the plot measurement errors found in Table 4 for Viet Nam.   

D. Cost Implications 

In the preceding analyses, we estimated the effect of survey methods on three dimensions of data 
quality (focusing on land measures), the implications of land measurement errors on the inverse land 
size–productivity relationship, and the implications of land measurement errors on input demand 
functions.  Improvements in data quality must be compared with implementation costs when taking a 
decision to implement any survey method.   

While implementing a survey, time is a scarce resource and enumerator’s remuneration is 
often the largest cost item (Carletto et al. 2016b). Thus, any time savings per unit of observation 
without a compromise in data quality means that more data can be collected and fieldwork can be 
better streamlined. In this section, we provide our implementation costs to roughly quantify costs per 
plot using the GPS or Google Earth methods. We cannot estimate enumerator time costs precisely, so 
some cost components are omitted from this discussion.   

The fixed cost associated with procuring GIS software needed to calculate area from GPS 
instruments or Google Earth images was zero in our study since we used a freely available and open 
source platform called QGIS (previously known as Quantum GIS). However, variable costs per plot are 
likely to be different between GPS and Google methods. We discuss four components of variable costs 
below, namely, plot boundary mapping, printing of paper maps versus procuring GPS instruments, 
farmer compensation, and consultancy fees. Certain variable cost items such as transportation to the 
household and to the sample plot are assumed to be the same between Google Earth and GPS 
methods and not factored into the overall cost comparison.8     

1. Plot Boundary Mapping 

The average time taken to identify the respondent, complete the basic modules of the questionnaire, 
and reach their plot is roughly 65 minutes per observation. This is the same for both the GPS and 
Google measurement. The average time taken to walk around the perimeter of plots in our sample was 
roughly 20 minutes.9 Assuming an average work day of 8 hours, and full productivity by an enumerator, 
GPS tracking can be accomplished for five plots a day. In reality, enumerators were only able to cover 
four plots a day due to either respondent or enumerator fatigue, and prevailing weather conditions. 
While implementing the Google measurement technique, the enumerator did not have to walk along 
the boundary of the plot, but only demarcate the same on a paper map, which took about 5 minutes on 
average per plot. Thus, an efficient enumerator could trace the boundaries of seven plots in a day. 
Enumerators were paid roughly $25 a day, which makes the cost per plot equal to $8.25 for GPS and 
$3.60 for Google Earth. 

  

                                                                 
8 Transportation costs can drastically increase if the same area has to be visited for a longer duration (more days) to cover the same 

number of observations, as might be the case with the GPS method. Thus, our estimate is a lower bound on actual cost savings. 
9  Based on field survey monitor’s management documents. 
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2. Printing versus Global Positioning System Instrument Costs  

High-resolution Google Earth images were printed on A4 size paper with colored ink to facilitate the 
identification of plot boundaries on the field. The cost of paper and printing was roughly $0.50 per 
plot. A tablet instrument with a well-functioning GPS application usually costs about $200, including 
peripherals such as batteries, bags, charging equipment, transport, internet, etc. These instruments are 
expected to have a lifetime of 600 interview days, which leads to an average per plot cost of $0.08. For 
future studies, it is possible to load Google Earth images onto the tablets itself to demarcate plot 
boundaries, which will lead to significant reduction in printing costs. 

3. Farmer Costs 

In our study, farmers had to be paid to (i) identify plot boundaries and (ii) allow enumerators to 
traverse the boundaries of their plot in the case of GPS mapping. Given that the dikes for rice plots 
were very narrow and not well established, farmers were concerned about potential crop losses in case 
an enumerator fell inside the plot. Farmers also had to walk along the perimeter of their plot with the 
enumerator in the case of GPS mapping. In our study, a compensation of $2 per plot was given to 
farmers identifying plot boundaries, and an additional $3 was given to farmers if they had to traverse 
the plot boundaries. This leads to a cost of $2 for Google Earth mapping and $5 for GPS mapping per 
plot. 

4. Transferring Global Positioning System and Google Earth Boundaries in Geographic 
Information System Software to Get Precise Area Estimates  

In all four countries, most plots were either rectangular or square and even in the case of uneven 
shapes, clear demarcations existed. However, in the case of GPS data where enumerators had to 
traverse the plot boundary, enumerators might have avoided a hedge or walked more unevenly. In a 
few cases, this led to the boundaries not completely closing, thereby making it difficult to compute the 
area. To correct for the closing of the plot boundary and the uneven walking across the perimeter of 
the plot, redigitization was required in QGIS. Consultants were able to fix about 32 plots in an 8-hour 
working period and were paid $100 a day. This translates to $4.69 per plot. In the case of Google Earth, 
the physical map was scanned and overlaid with the actual Google Earth image, and the plot 
boundaries were retraced to create a new digitized plot boundary to compute plot area. On average, 
consultants were able to fix about 24 plots in an 8-hour period and were paid $100 a day. This 
translates to $4.16 per plot in the case of using Google Earth, which could be cut down further if tablets 
were used to create digital boundaries.  

Given these cost components, the estimated cost in the case of GPS = $8.25 + $0.08 + $5 + 
$3.13 = $16.46 per plot.  The estimated cost in the case of Google Earth = $3.60 + $0.50 + $2 + $4.17 = 
$10.27 per plot.  The average cost per plot was reduced by roughly 37.61% by using Google Earth 
relative to GPS plot measurement. For a survey with 4,000 plots, which is typical of multi-topic 
agricultural surveys such as the Living Standards Measurement Study of the World Bank, the cost 
savings from using Google Earth with our study’s cost structure would be $6.19 x 4,000 = $24,760.  

VI. CONCLUSION 

Agricultural statistics using remote sensing have been used primarily to compare land use information 
and changes over time.  This paper investigates the reliability of remote sensing land information in an 
integrated household survey.  Nonclassical measurement error from farmer self-reports has been well 
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documented in the survey design literature (Carletto, Savastano, and Zezza 2013; Dillon et al. 2017, 
among others), primarily in comparison to GPS-measured plots.  In this paper, we investigate the 
reliability of remotely sensed satellite data on nonclassical measurement error and on agricultural 
relationships such as the inverse land size relationship and input demand functions.  We do this in four 
Asian countries, contributing to an emerging literature on survey methodology in developing countries, 
which heretofore has primarily focused on individual countries in Africa.   

To summarize our results, we find evidence that the differences between Google and GPS 
measures are not statistically significant, which validates using Google Earth images in the context of 
an integrated household survey as an alternative land measurement technique relative to GPS 
measures.  This is an important finding as cost differences between GPS and Google is significant.  
While remotely sensed data does require a single GPS point to identify the plot, it does not require a 
full tracing of the field’s perimeter by an enumerator if plot boundaries are delineated by irrigation or 
field boundaries, as is the case with most field crops.  In a related literature on compass-and-rope 
measures relative to self-reporting, Keita and Carfagna (2009) find that on small plots, compass-and-
rope can take up to 17 times longer than GPS, though GPS measurement still requires a survey team 
going to the plot and taking time to trace the field’s perimeter.  

The nonlinearity of self-reported bias varies across countries, with the largest magnitude of 
self-reporting bias at 130% of a standard deviation (2.2-hectare bias) in the Lao PDR relative to Viet 
Nam, which has 13.3% of a standard deviation (.008-hectare bias). In all countries except Viet Nam, 
the inverse land size–productivity relationship is upwardly biased by lower land area self-reported 
measures relative to GPS measures. In Viet Nam, the intensive margin of organic fertilizer use is 
negatively biased by self-reported measurement error by 30.4 percentage points.  The extensive 
margin of hired labor demand decreases by 7.6 percentage points in response to self-reported 
measurement error.  These differences across countries could be explained by at least two factors.  
Production systems diverge in important ways among countries as our descriptive statistics illustrate.  
Observed differences and the role of nonclassical measurement error may be correlated with 
production system characteristics.  An alternative explanation may be related to input market 
differences that could bias estimates of input demand or be correlated with landholdings, potentially 
due to wealth effects and access to markets, in different contexts.   

As established by a growing literature on land measurement bias due to survey methods 
(Carletto, Gourlay, and Winters 2015; Dillon et al. 2017), we provide evidence in four Asian countries 
of the persistence of self-reported error relative to GPS measures, though the magnitude of these 
biases differs considerably by context as noted above.  The policy implications of these results are 
significant for agricultural policy makers. Biases in the inverse land size–productivity relationships may 
provide false justification for input or land redistribution on the grounds of productivity gains.  Fertilizer 
demand estimates could be biased, affecting the targeting of fertilizer subsidies or the emphasis on 
input market development.  There is still much to be learned about measurement error in land 
reporting, particularly across different farming and crop systems where plot sizes may be 
nonsymmetrical.  Further exploration of the sources and determinants of these biases will improve 
causal estimates of these relationship by researchers, and data-driven policy making by agricultural 
statisticians and agricultural policy makers. 
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Land Measurement Bias: Comparisons from Global Positioning System,  
Self-Reports, and Satellite Data

Traditionally, data on agricultural land size is collected through farmer self-reports in surveys, which has been 
shown to vary significantly from more accurate estimates derived from Global Positioning System (GPS). 
However, using GPS introduces significant time and financial costs. This paper proposes using Google Earth 
for land area measurement and compares estimates with GPS and farmer self-reports. Results show that 
Google Earth-based land area estimates are very similar to GPS measures, but reduce fieldwork costs by 
nearly 38%. As remotely sensed data becomes publicly available, it may become a less expensive alternative 
to link to survey data than rely on GPS measurement.
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